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Multiscale Analysis and Control of Networks with
Fractal Traffic

Warren M. Lam and Gregory W. Wornell

February 1998

Abstract

A recently-introduced multiscale framework is used to develop efficient analysis and design tech-'
niques for networks with self-similar traffic. These allow the interarrival density function for fractal
point processes under Bernoulli random erasure to be determined, as well as the counting process
distribution for superpositions of these processes. The results suggest that fractal characteristics
are preserved under traffic branching and merging, which may, in turn, provide insight into the
prevalence of self-similarity in aggregate traffic broadly observed on real networks.

Multiscale techniques are also developed for analyzing fractal queueing scenarios. These are used
to obtain, as examples, the steady-state customer distribution for a memoryless queue servicing self-
similar arrivals, and for Poisson customers serviced with self-similar holding times. The persistent
memory inherent in the underlying point processes leads to substantially different behavior than is
observed in traditional queueing scenarios, and important implications on resource consumption and
quality of service are discussed.

We show how multiscale methods can be used in conjunction with dynamic programming tech-
niques to develop efficient and practical control policies for these fractal queueing scenarios. In
particular, optimal server control is developed for a memoryless queueing system with self-similar
traffic input, and optimal flow control is formulated for self-similar service of memoryless traffic. By
exploiting past history, these controllers achieve substantially better performance-both in terms of
quality of service and resource utilization-than traditionally used queueing control strategies.

Index Terms-fractals, point processes, queueing theory, optimal control, teletraffic, networks, self-
similar traffic, dynamic programming

1 Introduction

Point processes and queueing systems with fractal properties are increasingly being viewed

as important models in a host of communication network applications. In particular, self-

similarity in point processes is well-matched to the burstiness observed in many aspects of

such networks. A brief listing includes error occurrence on a number of telecommunication
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The authors are with the Department of Electrical Engineering and Computer Science, and the Research
Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139.
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links, arrival patterns of many forms of data such as compressed video, as well as the ag-

gregate traffic on a wide range of networks like local ethernets and the Internet as a whole

[1, 2, 3, 4]. At the same time, queueing models with self-similar properties are equally

promising, capturing many aspects of packet networks for which traditional memoryless

models are overly simplistic. For example, power-law holding times of fractal queues are

well-matched with the propagation delay associated with heavy-tailed packet-size distribu-

tions.

Motivated by the ubiquity of scale-free event distributions in these and a variety of other

applications, a number of fractal point process models have been developed and explored

in the literature [3, 5, 6, 7]. In this paper, we develop a multiscale framework for the

analysis and design of networks involving self-similar point processes and queues. Our

resulting analysis results lead to techniques for predicting the impact that the presence of

self-similar distributions has on the performance of telecommunications networks. In turn,

our subsequent investigation of network design focuses on methods of optimal control of

network activities. Collectively, these results have significant implications in the optimal

structuring and management of both existing and future networks.

The rest of this paper is organized as follows. In Section 2, we summarize key aspects

of the fractal point process model and an associated multiscale framework developed in [8],

which forms the basis for our current development. In Section 3, we introduce a Marko-

vian interpretation for this multiscale framework, which is well suited for determining the

counting process statistics for this process. In Section 4, we apply this framework to the

analysis of key network activities involving fractal traffic, which include interaction among

multiple traffic streams and queueing of fractal processes. In Section 5, we develop exten-

sions of our multiscale framework to allow us to design control policies for a number of

fractal queues, including optimal server and flow control. Finally, Section 6 contains some

concluding remarks.
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2 Fractal Renewal Processes

A point process-i.e., a random distribution of event arrivals in time-is naturally char-

acterized in terms of its interarrival intervals X[i]. More precisely, we let X[1] denote the

arrival epoch of the first arrival after t = 0, and X[i] denote the time interval between the

(i - 1)st arrival and the ith arrival, for i > 2. Other aspects of a point process are revealed

by its characterization in terms of the associated counting process N(t), whose value at

time t is defined as the number of arrivals in the interval (0, t]. Since the counting process

describes the history of the point process, its value at any instant t has dependence on the

choice of the reference point t = 0. Two scenarios are of special interest. In the arrival-

observed case, the reference point coincides with an event. In the context of networking

studies, for example, this can represent data traffic as viewed by a user. On the other hand,

the random incidence case corresponds to the point of reference being chosen randomly,

independent of the point process. As such, random incidence is useful for modeling traffic

from the perspective of network management, for example.

The fractal point process model of interest is defined in terms of a particular self-

similarity property. Specifically, the associated counting process satisfies N(t) - N(at) for

all a > 0, where the notation = denotes statistical equality, in particular in the sense of all

finite-dimensional distributions.

Much of the physical network behavior of interest is effectively stationary, exhibiting

no preference for a time origin. As such, it is tempting to restrict attention to self-similar

point processes that are also renewal processes. However, a true renewal process cannot be

self-similar [8]. Nevertheless, it is possible to develop a fractal point process model based

on a generalized notion of renewal process. To develop this notion, we first introduce the

following convenient terminology: we say that a point process with interarrivals Y[i] is

derived from a point process with interarrivals X[i] via conditioning on the event £ if Y[i]

is the subsequence of X[i] formed by discarding those components such that X[i] £. As

developed in [8], a fractal renewal process is then defined as a self-similar point process that

satisfies the following:

1. When conditioned on the event = {x < X < x} for some 0 < x < < oo, the
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resulting point process is a renewal process; and

2. When conditioned on each of any number of arbitrary, mutually exclusive events

1 ,YF2 ,... ,L such that Yj = {xl < X < jl} with 0 < x < < < oo, the resulting

point processes are mutually independent.

Since observations of physical signals are typically limited both in resolution and duration,

Property 1 implies that a fractal renewal process is effectively a renewal process. Further-

more, it can be shown that as a consequence of self-similarity, the interarrivals Y[i] resulting

from such observations must be distributed as [8]

1
f(y) - x < y < (1)y, -

where x and x are determined by the resolution and duration windowing, respectively. The

shape parameter y in (1) is directly related to the fractal dimension D of the process via

= D + 1. Fig. 1 illustrates a typical sample function of a fractal renewal process with

shape parameter 7 = 1.5, viewed under successive magnification, from which the hallmark

scale-independent clustering behavior is apparent.

Analysis of the fractal renewal process is facilitated by a highly efficient Poisson-based

multiscale representation developed in [8].1 The essence of this framework is to model

a fractal renewal process as a mixture of a multiscale family of Poisson processes. In

terms of interarrival statistics, this is equivalent to decomposing the power-law interarrival

distribution of (1) as a weighted sum of dilated and compressed exponential functions. In

particular, with a finite number of constituents, the interarrival decomposition takes the

form

L-1

fx(x) = p jfxj(x), (2)
j=O

1In fact, such representations naturally lead to computationally-efficient algorithms for robust estimation
of the scaling parameters of such processes, as also developed in [8].
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where the Xj are exponential random variables with rate parameters

Xj = (3)

while the pj form a geometric probability distribution

pj = X2 (71-7)j, (4)

with a2 as a normalization constant. Spacing between the constituents is governed by the

scale increment > 1, while the number of scales is equal to L, with scale 0 being the finest

scale.

3 The Multiscale Pure-Birth Process

The preceding multiscale model has a natural interpretation in the form of a multiscale pure-

birth process. This process, depicted in Fig. 2, forms the basis of our development. General-

izing the well-known pure-birth process (see, e.g., [9]), the state space of this Markov process

is naturally partitioned into "superstates," each of which represents a certain number of

births. A superstate is, in turn, composed of a set of states which correspond to the scales

in our finite-scale framework. Hence, we index the states with a pair of integers (i, j), where

the superstate index i is nonnegative, while the scale index j ranges from 0 to L -1 for an L-

scale representation. We define the probability vector pi(t) (Pi,o(t), Pi,1 (t),... Pi,L- (t)),

with Pi,j(t) denoting the probability that the process is in state (i, j) at time t. With this

notation, the counting process probability distribution can be expressed as

Pr{N(t) = i} = pi(t)l T, (5)

where 1 is a row vector with all entries equal to 1. For convenience, we use the notation

7ri(t) Pr{N(t) = i}.

Every transition in the multiscale pure-birth process results in an increment in the

superstate index, and thus a birth. In our model, the birth rate is assumed independent

of the number of births already occurred. Thus, the mean departure rate from each state
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(i, j) is only a function of the scale j, taking the specific form Aj A/7J in terms of the

scale increment 7r and the reference rate A. Upon a birth, every state j' of the succeeding

superstate can be immediately reached, with probability pj = 2qj , where q -71- governs

the relative weighting on the scales, while a 2 is the normalization factor. Thus, the duration

between consecutive births is governed by a probability law of the form (2).

The counting process associated with the fractal renewal process can be readily obtained

from the multiscale pure-birth representation. Inspecting Fig. 2, it is straightforward to set

up the forward Kolmogorov equations [9] for the multiscale pure-birth process. In vector

form, we have that

dPo(t) = -po(t)B (6a)
dt

A pi(t) = -pi(t)B + Pi-(t)bTq, i> 1 (6b)

where q (Po,P, .. . ,PL-1) contains the choice probabilities, b (O,77-1,...,1- ( L- )) is

a vector of the multiscale dilation factors, and B diag(b) is a diagonal matrix with the

dilation factors along its main diagonal. From (6) we obtain the transform-domain equation

1 d P(z;t) = P(z; t) (-B + zbTq), (7)

where P(z; t) denotes the z-transform of the sequence {pi(t); i = 0, 1,... }, defined as

00

P(z; tO A zpii M
i=O

Eq. (7) can now be readily solved to yield

p(z; t) = -(z; 0) exp ([-B + zbTq] At), t > 0, (8)

which determines the z-transform up to an initial condition.

In the arrival-observed case, where the point of reference t = 0 is a renewal, the first

interarrival is statistically identical to every other interarrival. Hence, the scales within

the zeroth superstate are chosen with probabilities {p j ; j = 0, 1,..., L - 1}, and the initial
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condition in (8) is pf(z; 0) = q. Inverting the resulting transform P(z; t)1T, we can obtain

a time-domain characterization of the arrival-observed counting process distribution, which

we denote by 7r(a) (t); i = 0, 1,.... In particular,

L-1

ir()(t) = po(t)lT = (O; t)lT = qexp(-B)At)lT = Epiexp(-Ait), (9)
i=o

which decays as 1/t - l for large t when L -+ oc. Higher-order terms can be obtained

numerically from a Taylor series expansion of the transform p(z;t)1T, as developed in

detail in Appendix A. The main results are that for i > 1,

(a)(t) a(i) (t) __(i) (At)l +

with the first-order coefficients given by

k

a 1( ) = MMk- i (10)
1=1

and the higher-order coefficients obtained via the recurrence relation

k-i+l

a(i) Ma(i-1) (11)k= ki-ak, (11)
1=1

where MI is the Ith moment of a random variable R distributed according to

Pr{R=r- j) = p j , j=0,1,...,L-1. (12)

For random incidence, we assume observation begins at a random time, with the point

process already in equilibrium. Under this assumption, the scale of the first interarrival is

selected with the steady-state marginal distribution over scales, which is a&2 qB-1, where &2

is for normalization; an argument is given in Appendix B. Using this in (8), we can obtain a

time-domain characterization of the random incidence counting process distribution which

we denote by {(7rr) (t);i = 0,1,... . For example, it is straightforward to get the closed-
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form expression

L-1

r)(t) &= 2 S pi exp (-Ait), (13)
i-0

which when L oo approaches 1 if -y < 2 and decays like 1/ty - 2 for large t if y > 2.

Higher-order terms of the probability distribution take the form

7r)(t) r(i) (t) i (i) (At)i+l

where the coefficients are obtained from those in the arrival-observed distribution via

r(i) = (a() + a (i-1))2. (14)

Details of the derivation are given in Appendix B.

Figs. 3 and 4 illustrate the time evolution of the lower order terms in the arrival-observed

and random incidence counting process distributions for the case y = 1.8. It is worth

remarking that in practice, very few scales are typically needed for a good approximation

to the probabilities over a finite time interval, although more scales are generally required

in small y situations due to the more persistent tail.

Several features of the plots are noteworthy. First, in the arrival-observed case of

Fig. 3, that the probabilities ri(t) all fall off along the same ll/t- l asymptote implies

that E [N(t)] - O(t-l'). These statistics are consistent with the strong clustering behav-

ior characteristic of these processes, which is increasingly pronounced as 'y decreases. By

contrast, for the memoryless (Poisson) process, the counting process probabilities fall off

exponentially quickly and E [N(t)] O(t). Moreover, the power-law probability decay is

also consistent with the results from direct computation of the counting process statistics

[10], which involves asymptotic analysis of convolution of multiple power-law functions. In

addition, the counting process distribution depicted in Fig. 4 for the random incidence case

provides dramatic evidence of the impact of the unusually long quiescent periods between

clusters in fractal point processes.

We turn now from the analysis of fractal point processes in isolation to analysis of their
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behavior in scenarios representative of those encountered by traffic in large, interconnected

networks.

4 Network Analysis for Fractal Traffic

Key activities in a communication network can typically be modeled in terms of transfor-

mations on point processes. Interaction among traffic streams, for example, can often be

modeled as branching and merging of point processes. Propagation delay and processing

latency at sites and links can typically be captured by queueing models. In this section,

we apply multiscale techniques to analyze a number of these activities. Branching and

erasure of fractal renewal processes will be addressed in Section 4.1, while fractal renewal

process superposition will be the theme of Section 4.2. Queueing systems with self-similar

properties will be explored in Sections 4.3 and 4.4.

4.1 Random Erasure of the Fractal Renewal Process

Data loss and branching of data streams are two of the most frequently encountered activ-

ities in a network. An often realistic and widely-adopted model for both transformations

is Bernoulli point process erasure, whereby each point is independently erased with a com-

mon probability p. In what follows, we study the behavior of the fractal renewal process

under this mode of erasure. A key result of our analysis is the preservation of self-similar

characteristics even under very high erasure probabilities.

To determine interarrival density under Bernoulli erasure, we begin by observing that

with probability 1 - p, an arrival of the original process contributes a count of unity to

the counting process resulting from erasure. Otherwise, it contributes a count of zero. In

the transform domain, this corresponds to the usual replacing of z with p + (1 - p)z in

the z-transform of the original counting process distribution. In particular, using (8), the

counting process distribution of an erased fractal renewal process has the z-transform

p(p+ (1 -p)z;t)lT = (z; 0) exp ([-B + (p+ (1 - p)z)bTq] At) 1 T. (15)

With the initial condition (z; 0) = q, and with z = 0 in (15), the arrival-observed proba-
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bility of zero arrivals in an interval (0, w] is

(a)(w) = qexp ([-B + pbTq] Aw) 1 T. (16)

But this event is equivalent to the event {W > w}, where W is the interarrival beginning

at 0. Differentiating (16), we have the interarrival density

fw(w) =-d Pr{W > w} = qexp ([-B +pbTq] Aw) (B - pbTq) 1 T

= A(1 -p)qexp ([-B +pbTq] Aw) bT, w > 0. (17)

Using (17), we have plotted in Fig. 5 the interarrival density of a fractal renewal pro-

cess with shape parameter y = 1.8, subject to various erasure probabilities. These plots

suggest that the erased interarrival density largely retains the power-law characteristics of

the original density (i.e., the p = 0 case). In fact, for p < 1, empirical studies suggest that

as A -+ oo, L - oo,

fw(w)'
W7Y

for every w > 0.

4.2 Superposition of Fractal Renewal Processes

Merging of data streams is another point process transformation typical in networks. To

investigate the behavior of fractal point processes under merging, we consider the super-

position of two independent fractal renewal processes. A key implication of our results is

the invariance of fractal point process features under superposition. More importantly, our

results also suggest that the family of fractal point processes constitutes a domain of attrac-

tion under aggregation, much like the Poisson family. This behavior is consistent with the

spectral analysis results obtained in [6]. Together with the random erasure results, these

superposition results may prove useful in explaining empirical observations of the ubiquity

of self-similarity in aggregate traffic on a broad range of networks.

When two point processes are superimposed, their counting processes add. From an
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arrival's viewpoint, the structure of the two counting process distributions are inherently

different. On one hand, the process to which it belongs is governed by the arrival-observed

distribution; we denote this distribution by {T?(la)(t);i= 0, 1,... }. On the other hand,

since the constituents are independent, the arrival observes the random incidence counting

processing distribution, denoted as {7r(2r)(t);i = 0,l,... }, for the other point process.

Thus, the overall counting process distribution will be a discrete convolution of 7ria)(t)

and 7r(2r) (t). If, in addition, the two constituents have the same fractal dimension, the

resulting counting process distribution will be expressed more simply as

i
(,a)(t) = Zwa)(t)7r(r)(t), i = 0,1 (18)

j=O

By a similar argument, the random incidence counting process distribution of the superpo-

sition is the convolution of the two constituent random incidence counting process distri-

butions,

i

r) (t) = Zrr) (t)(7rr)(t), i = 0,1,.... (19)

j=O

Figs. 6 and 7 show the arrival-observed and random incidence counting process distribu-

tions corresponding to the superposition of two independent fractal renewal processes, each

with shape parameter y = 1.8. The computations were performed according to (18) and

(19), respectively, using the counting process distribution results of Section 3. Comparing

this set of plots with those for a single process (Figs. 3 and 4), we observe that key features

such as the asymptotic power-law decay in the arrival-observed distribution, and dominance

of zeroth-order term in the random incidence distribution, are largely preserved under su-

perposition, suggesting invariance of fractal renewal processes under this transformation.

These counting process results provide additional verification of the invariance of fractal

point proceses under superposition, complementing the spectral evidence given in [6].
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4.3 Queueing of the Fractal Renewal Process

While random erasure and superposition capture key interaction among multiple data

streams, queueing models are appropriate for activities at individual sites and channels.

More generally, queueing analysis is important in many applications involving resource

sharing. The multiscale pure-birth model can be readily extended to support queueing sce-

narios. For example, addition of backward transitions, or deaths, results in the multiscale

birth-and-death process of Fig. 8, which models a fractal renewal process being serviced

by a single-server, memoryless queue. The added transitions model service completion and

customer departure and therefore all occur at the mean service rate M. Because the ser-

vice being modeled is memoryless, the multiscale birth-and-death model is applicable to

work-conservative queues with arbitrary service discipline.

As an illustration of the types of results that can be obtained with this Markov model,

we develop systematic and efficient methods to compute the steady-state probability dis-

tribution of the number of customers in the system {(ri; i = 0, 1,... }, which is particularly

insightful for buffer allocation and predicting quality of service, for example. The dynamics

of the process in Fig. 8 are governed by the system of forward Kolmogorov equations:

ld 1
po(t) = -po(t)B + -pl(t)I (20a)

_I\ wt- P

Xd pi(t) -pi(t) (B+ I) +pi_(t)bTq+-pi+l(t)I, i>1, (20b)

where p = A/. To obtain the equilibrium state distribution {pi; i = 0, 1,... }, we employ

the matrix-geometric methods of [11]. By this, we first obtain a positive semi-definite

solution R to the quadratic equation

O = pbTq- R(pB + I) + R2 . (21)

This can be accomplished via successive approximation (see [11]). The steady-state proba-

bilities are then given by

pi=xRi, i=0,1,..., (22)
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where x is the (unique) left null vector of pB - R, normalized by the constraint

x(I - R) - 11T = 1. (23)

Finally, the steady-state customer distribution can be obtained via 7ri = pil T .

These methods are a much more computationally practical means for predicting queue

performance than are simulation-based approaches. In Fig. 9, the analytical method for

determining the steady-state distribution for the number of customers in the system with

service rate 1/p = /A = 0.15 and shape parameters y = 1.5,1.8 is compared with that

obtained by simulations using the next-event time advance methods of [12]. Despite large

sample sizes, discrepancy between the theoretical and simulation results remains largely as

a consequence of substantial outliers in the simulations. Such outliers are characteristic of

the heavy-tailed distributions involved.

Both the theoretical and simulation results suggest that conditioned on one or more

customers, the distribution approaches a geometric function. This is indeed the case, and

can be attributed to the fact that the solution to (21) is of rank 1. In particular, it can be

shown that the solution must be of the form

R bTw, (24)

which implies that the steady-state customer distribution satisfies

ri+ =wbT k , i = 1,2, .... (25)
7rTi

Thus, k is the decay rate of the geometric portion of the distribution. From (21), we get

that w in (24) must satisfy

pq = w (pB + I) - wk = w [pB + (1 - k) I].
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Right multiplication of both sides by [pB + (1 - k)I]- 1 bT leads to

2 P qp/q qL-p/,L-L1 k, (26)
P++((1-k) p / +( 1 - k ) + p / lL - l + (1 - k) 

which can be solved iteratively using bisection search techniques, for instance.

A useful bound for k can be obtained via Jensen's inequality. Specifically, the left hand

side of (26) is less than or equal to

pE [R] (27)
pE [R] + (1- k)'

where R is the random variable defined in (12). Simplifying, we get that

k(l - k) < pE[R] (1 - k),

which, since k < 1 for an ergodic queue, simplifies to

A
k < pE[R] = E [R]. (28)

Fig. 10 shows values of k obtained via bisection-search solution of (26), together with the

bounds as prescribed by (28). As expected, higher service efficiency (/A) leads to less con-

gested system, as reflected by the lower k (or, sharper decay in the customer distribution).

These plots also suggest that while the bound in (28) is somewhat loose for slow-service

scenarios, it is a potentially useful closed-form approximation for k in the fast-service regime.

Another important feature of the distributions in Fig. 9 is the dominance of the prob-

ability of zero customers (i.e., idle system). This can again be attributed to the unusually

long gaps between clusters of customer arrivals. This behavior suggests that service rate

may be lowered for large time intervals, with no noticeable degradation in the quality of

service. In Section 5.1, we show that this can indeed be accomplished via dynamic server

control.
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4.4 Power-Law Service of the Poisson Process

While the system of Section 4.3 addresses self-similarity in the arrivals, fractal characteristics

can often be found in other aspects of a queueing scenario. For example, the distribution

of packet sizes in many networks is often well-modeled as a power law, with frequent short

packets and occasional extraordinarily long packets. The power-law holding time arising

for this packet distribution can be modeled with the Markov process of Fig. 11, obtained by

transposing the multiscale birth-and-death process of Fig. 8. Thus, the input process is now

Poisson with arrival rate A, while the service is captured by an L-scale representation with

finest-scale service rate . Since the service is no longer memoryless, this model is restricted

to queueing disciplines with no preemption. As such, various forms of time-slicing are

precluded, for example. Nevertheless, many important disciplines are still captured, such

as first-in-first-out, last-in-first-out, and service in random order.

To obtain the steady-state customer distribution of this queueing system, we again use

the matrix-geometric method of [11]. In particular, we solve the matrix quadratic equation

0 = pI- R(pI + B) + R 2b T q (29)

for R via successive approximation, where as before, p = A/. Once R is obtained, the

steady-state customer distribution can be generated via (22) and (23). However, unlike

(21) in the system of Section 4.3, the solution to (29) is not rank 1, precluding further

simplication.

Two sets of results are plotted in Fig. 12, based on the above computaton and next-

event time advance simulation. For the top curves, the input arrival rate is p = 2 x 10 - 7,

while the shape parameter of the service duration is -y = 1.5. For the bottom curves, the

arrival rate is set at p = 1 x 10- 5, while the shape parameter of the service time is y = 1.8.

Agreement between our prediction and simulation results is close.

The figure also suggests that a key feature of this queueing scenario is the heavy-tailed

customer distribution, which asymptotically approaches a power law. An implication of

this is the requirement of large buffers for its implementation. In addition, long delay and

hence poor quality of service can be expected for the customers if a first-in-first-out (FIFO)
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discipline is adopted. In Section 5.2.1, we develop an optimal dynamic queueing control

strategy to improve performance of this system.

5 Network Control for Fractal Traffic

The analysis in Sections 4.3 and 4.4 focusses on the behavior of queues with fixed system

parameters. However, constant-rate memoryless service of input processes with self-similar

arrivals can result in tremendously inefficient utilization of resources, as reflected by very

high idle probability. Similarly, poor quality of service can result for service of a constant-

rate Poisson input when the holding-time statistics are self-similar, which manifests itself

in the form of a heavy-tailed queue-length distribution.

In many realistic scenarios, however, various aspects of a queueing system are control-

lable, often in real time. For example, controllability of service rate is quite feasible. In

communications engineering, a number of schemes have been proposed for versatile alloca-

tion of bandwidth, ranging from fast packet switching networks [13] to flexible assignment

of multilevel trunks and trunk groups [14]. Likewise, control of input arrival rate, or flow

control, is also possible in many situations. Specifically, input throttling, or arrival rate

reduction, can be implemented via admission toll or traffic re-routing.

Dynamic programming [15, 16] is a natural tool for developing queueing policies. Indeed,

dynamic programming has been used to develop a number of optimal controllers for the

M/M/m family of queues, i.e., queueing systems with memoryless input and finitely many

(m) memoryless servers. For example, it is straightforward to develop server control for -

the M/M/1 queue that optimizes a long-term cost of two components, corresponding to the

costs of service and buffer occupancy, respectively [17]. In this scenario, it is well-known that

the optimal service rate at any time depends only on the number of customers in system.

Further, under rather broad conditions, the optimal service rate increases monotonically

with the number of customers present.

Similar techniques can be used to design optimal flow control for the M/M/1 queue [17].

In this case, the admission rate is designed to minimize a cost function composed of a cost

on buffer occupancy and a penalty for input throttling. As in the server control problem,
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optimal strategy for this problem depends only on the number of customers present, and

the results agree closely with intuition: under rather broad conditions, customer arrivals

are increasingly deterred as the queue becomes more crowded.

That the optimal server and flow control policies for M/M/m systems do not exploit

history of the system and are completely determined by the current state is a direct con-

sequence of the memoryless nature of such systems. In contrast, we show in this section

that optimal control strategies for fractal queues depend heavily on past history to main-

tain efficient operation due to the long-term dependence in self-similar point processes.

These controllers, which we develop by applying dynamic programming techniques within

our multiscale modeling framework, significantly improve performance in terms of both

resource usage and quality of service over controllers that do not exploit past history.

5.1 Server Control for the Fractal Renewal Process

We first consider the optimal control of the queueing system of Section 4.3, where a single

memoryless server processes a fractal renewal process input. As is common in other state-

space control problems, we develop optimal server control policies for this system based on a

two-step approach: we first develop ideal controllers that rely on complete state information,

then develop practical controllers by replacing the state information with suitably defined

state estimates. The first of these subproblems is addressed in Section 5.1.1; the second is

treated in Section 5.1.2.

5.1.1 State-Based Multiscale Server Control

To model the behavior of this system, we again employ the multiscale birth-and-death model

of Fig. 8. However, the service rate is now assumed controllable and can be varied over an

achievable range 0 < , < T based on the state of the queue. To reflect its state dependence,

we use the notation pi,j to denote the service rate when i customers are present and the

scale of the next interarrival is j [i.e., when the state is (i, j)].

A fundamental tradeoff exists in the operation of this queue. On one hand, as pointed

out in Section 4.3, high service rates will result in inefficiently used server, as reflected by the

substantial idle probability. On the other hand, if the service rate is excessively reduced,
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the quality of service can severely decline. In the extreme case, the system will become

non-ergodic and the queue will grow without bound.

To facilitate quantitative analysis, we assign costs to these two criteria. As a measure of

resource consumption, we define a service cost c(gz), which is a continuous, nondecreasing

function of the service rate. For convenience, an idle server is assumed to inflict zero

cost, i.e., c(O) = 0. To capture quality of service, we define a holding cost h(i), which is

nondecreasing in i, the number of customers in the system. This cost is directly related to

the waiting time experienced by each customer under the first-in-first-out (FIFO) discipline,

for example. For convenience, an empty system is assumed cost-free, i.e., h(O) = 0. The

overall objective function is then the expected value of the combined costs, accumulated

over time:

J = E e-e t [h(i(t)) + c((t))]dt] , (30)

where i(t) is the number of customers in the queueing system at time t, and /I(t) is the

service rate at time t. The discount rate is included to allow weighting of future costs

with respect to the present.

To exploit results from discrete-time dynamic programming, we recast our continuous-

time Markov decision problem into an equivalent discrete-time one. We begin by adding

self-transitions in the multiscale birth-and-death process so that the total departure rate

from each state is Q A + p7, i.e., the maximum transition rate in the original process. This

yields the equivalent Markov process shown in Fig. 13. Since the departure rates are now

uniform across all states, this step is sometimes referred to as rate uniformization [17].

Next, we rewrite the cost in (30) as

J =E E [z e-tdt (h(i[n]) + c(i[n]))] (31)
n=O tn

where {tn; n = 0, 1,... are the transition epochs of the uniformized process, and i[n] and

p[n] are respectively the number of customers and the service rate during the nth interval,

(t, tn+l]. Carrying out the integration in (31) and taking expectation, we get that the cost
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is

00 -t - e-tn+1 1

J -E ] E[h(i[n]) +c([nj)]

n=O (32)

+ E (f + )n E[h(i[n]) + c(p[n])],
n=O

where the second equality follows from the fact that t is an nth-order Erlang random

variable with mean n/Q. The final expression in (32) is the objective function of a discrete-

time dynamic programming problem for a Markov chain with the same topology as the

process in Fig. 13, where for any pair of states x and y, the transition rate t,y is replaced

by transition probability Px,y = t,y/Q. The holding and service rate costs are respectively

h(.)/( + Q) and c(.)/(3 + Q), while the discount rate is f/(P + Q).

Optimal stationary policy for this discrete-time dynamic programming problem is gov-

erned by the Bellman equations [17],

Voj = ~ + f~ ~j_-- - y ~ r2qj'-lVVj =: Q {- j l= E a Ij-1 j + Q- 7j Voj , j=, .. ,L-1 (33)

Vij = min + h(i) + c(jI) + 2qJ'-lVi+,j + Vil,j
Mj'[l =1 (34)

+Q jx /Vij , i=1,2,..., j=O,1,...,L-1

where Vi,j is the total accumulated cost if the system commences with i customers and

with the interarrival scale being j [i.e., in state (i, j)]. The optimal stationary service rate

i*j for state (i,j) is then the minimizing rate for the corresponding equation of (34). If

the minimum is achieved at multiple values of , the lowest rate is picked. This system

of equations can be solved numerically via the value iteration method [17]. Specifically,
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beginning with Vi,j(0) = 0 for all (i, j), we iterate the system

Vo,j(k + 1) = 2 {+ 2 Vi,, (k) + (Q- ) Vo,j (k) (35)

Vi,j(k + 1) = min + h(i) + c(p) + j E 2'- li+,j,(k) + Vi-j(k)
uE[F] ? + ~ ~-j'=l

( rj_l Vj(k)- (1,2,..,36)

j =0,1,...,L-1

until convergence. The optimizing rate p(k) at each iteration k then converges to Hz j.

Based on this approach, optimal server control is designed for several systems with

fractal renewal process input, and the resulting policy is shown in Fig. 14. To allow closed-

form minimization of (36) in each step, a quadratic service rate cost c(p) = CI 2 is adopted

throughout. Moreover, a linear holding cost h(i) = hoi is used, which is a measure of

expected delay in a first-in-first-out queue. In the cases depicted, co = 1 and ho = 0.01. To

reflect equal importance of the present and the future in our decision making, a discount

rate = 0 is used.

Each curve in Fig. 14 represents the optimal service rate ,i*,j as a function of the inter-

arrival scale j, with the number of customers i held fixed. For a given queue length, the

optimal service rate is seen to decrease monotonically for coarser (i.e., larger) scales. Thus,

if the next arrival is expected to be distant, the service can be relaxed without burdening

the future. The optimal service rate is also monotonic in the number of customers when the

scale is fixed: the more crowded the system, the busier the server. In Appendix C, we show

that this actually holds more broadly for any monotonic convex holding cost h(i). Finally,

we note that small y cases are less demanding on the server. In effect, heavier tails of the

corresponding interarrival densities imply that prospective customers are in general more

distant, and hence, have less impact on the present decision making.
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5.1.2 State Estimation and Realizable Server Control

In this section, we develop scale estimates that can be used together with queue length

information in the state-based controller structure of the previous section to obtain practical

control policies. In particular, we consider estimation of the interarrival scale from the time

t that has elapsed since the last arrival. With a multiscale representation of the interarrival

density as in (2), the minimum probability-of-error-i.e., maximum-a-posteriori (MAP)-

scale estimate is the scale j that maximizes

L(j) = pj Pr{Xj > t} = pj exp (-Ajt) .

Using (4), we get that

(CJ+1) 1= qexp (-(Aj+l - Aj)t),
£(j)

which is monotonically increasing in t. Thus, £(j + 1) > L(j) if and only if

t>ln() 1A = 3n () (7 )Aq Aj - j+1 q (7/ - 1)A'

where the equality follows from (3). Thus, our scale estimate j(t) is the unique integer j

such that

q ( -1)A \q/ (7 - 1)A'

i.e.,

j(t) = log ( t(17 ))1 (37)

Fig. 15 depicts the optimal server policy of Fig. 14(a), modified to operate without

knowledge of the interarrival scale. These plots are obtained by warping the horizontal axis

to yield p,3(t) as a function of number of customers present i, and the time elapsed since

the last customer arrival t. To apply the prescription of Fig. 15, we follow a particular

solid curve as time progresses, until a customer enters or leaves the system. For a customer
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arrival, we move to the beginning of the next higher curve. Upon a customer departure, we

drop vertically to the next lower curve. Thus, past history of the system, specifically the

arrival epoch of the last customer, is crucial in our decision making.

5.1.3 Simulations

Through simulations, we examine the benefits of our multiscale controller over more conven-

tional designs which ignore past history, such as the M/M/1 controller and its variations.

In contrast to our systematic multiscale controller design, we will see that delicate hand-

tuning is generally required for these memoryless controllers to achieve even reasonable

performance when servicing fractal input.

Our simulations are based on the next-event time advance method of [12]. For fair

comparison, each controller is given the same customer input, which is a sample function of

a fractal renewal process with shape parameter -y = 1.8, consisting of N = 500 000 arrivals.

The cost parameters are set at co = 10, ho = 0.01 and P = 0 throughout. To derive the

M/M/1 controller of [17], the input is treated as if it were a Poisson stream, with arrival

rate estimated according to N/Sx[N], where Sx[N] denotes the arrival epoch of the last

customer. The resulting service policies are shown as the dashed plots in Fig. 16, together

with the multiscale policies which are represented by the solid curves.

Based on the simulated systems, we have obtained the total cost J (defined in (30)) and

the average delay under a first-in-first-out discipline, and have tabulated these quantities in

Table 1. From the table, it is apparent that the M/M/1 controller is substantially inferior in

terms of either measure. As we can see in Fig. 16, this controller attempts to lower overall

cost by reducing the service cost, at the expense of a higher holding cost. Consequently,

it is more susceptible to congestion. The estimated steady-state customer distributions in

Fig. 17 provide further evidence for a longer queue expected for the M/M/1 controller.

One way to lower the holding cost is by raising service rates. This can be achieved

simply by scaling up the service rates of the optimal M/M/1 controller. By trial and error,

we have tuned the M/M/1 controller to yield the least overall cost for the given customer

input. The resulting controller is depicted in Fig. 18, alongside the optimal multiscale

controller, and its performance is summarized in the third column of Table 1. Although it
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is the best controller obtainable by scaling the M/M/1 controller, this design is nevertheless

still suboptimal, as can be seen from Table 1. Also, as is apparent from Fig. 18, the modified

M/M/1 controller is more demanding on resources, requiring a substantially higher peak

service rate than the multiscale controller.

That a large proportion of interarrivals in a fractal renewal process occur on short time

scales suggests that an alternative controller design could, in principle, be based on mim-

icking fine-scale behavior of the optimal multiscale controller. We next design a memoryless

controller of this type based on the fine-scale service rates in the optimal multiscale policy.

As before, we hand-tune these service rates to obtain the lowest total cost for the given

customer input, using trial and error. The resulting controller is plotted in Fig. 19, while

its performance is summarized in the last column of Table 1. As is apparent from the table,

this controller is still inferior to the multiscale scheme; note, for example, the considerably

higher average delay.

The preceding results collectively reflect that while memoryless service policies are sim-

ple to implement, in general they yield rather poor results for fractal customer input. Even

when carefully hand-tuned according to the actual customer arrivals, these policies are in-

herently inferior to the multiscale controller. Because the fractal model is a process with

strong memory, intelligent allocation of service based on its history is ultimately key to

successful control of this class of queues.

5.2 Flow Control for Power-Law Services

In this section, we study optimal control of the queueing system of Section 4.4, where

Poisson customers are serviced with power-law holding times. The basis of our design will

be the transposed multiscale birth-and-death process of Fig. 11, which is used for queueing

analysis in Section 4.4. With this model, it is the service that is described in the form of a

multiscale representation.

5.2.1 Multiscale Flow Control

The heavy-tailed customer distribution inherent in such queueing systems means that tra-

ditional flow control is problematic. In terms of system management, such controllers result
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in high likelihood of buffer overflow, while from the customers' perspective, long delay and

poor quality of service are experienced. In this section, we describe improved flow control

policies that mitigate these problems. To achieve this, we allow the controller to vary the

admission rate A between 0 and the actual arrival rate A. As before, we first solve this

problem assuming complete knowledge of the state of the system. Thus, we denote the

input rate at state (i,j) by ij.

The objective function is again made up of two components, with a holding cost h(i)

which reflects buffer occupancy, and a throttling cost c(A) which penalizes loss of customers.

We assume that the holding cost is monotonically nondecreasing in the number of customers,

while the throttling cost is monotonically nonincreasing in the admission rate. In addition,

we assume h(O) = c(A) = O. The total cost is accumulated over time, with a discount rate

,3 included:

J= E [j e-t [h(i(t)) + c((t))] dt , (38)

where i(t) is the number of customers in the queueing system at time t, and A(t) is the

admission rate at time t.

Our approach to this problem will be very similar to the server design of Section 5.1. Ap-

plying rate uniformization to the transposed multiscale birth-and-death process of Fig. 11,

we obtain the equivalent process of Fig. 20. Note that here we have also lumped the zeroth

superstate into a single state to obtain a more realistic model; the scale of the next service

in general cannot be deduced from an empty queue. We next recast this problem into its

discrete-time equivalent, with the corresponding Bellman equations

1 ( L
V0 = min + c(A) + A l,j, + ( - A) Vo (39)

AE[O,]/ 3 + I ' =

L

Vi,j = mmin + {h(i) + c(A) + 2q'-i ,j , + AV+,j

~jAE[OA3+ Q (40)

where is theA) Vj}accumulated cost i=f the system c1,2,ommences in state (i, ). The opt,Limal,

where Vj is the total accumulated cost if the system commences in state (i, j). The optimal
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stationary admission rate A j when the system is in state (i, j) is the minimizing rate for

the corresponding equation of (39) and (40). If the minimum is achieved at multiple values,

we pick the highest rate. In contrast to the optimal server control problem of Section 5.1,

the zeroth-order equation (39) is no longer trivial, since the throttling decision in the zeroth

superstate does have an influence on the future.

Figs. 21 shows the optimal stationary flow control policy obtained by solving (39) and

(40) via the value iteration method [17]. Throughout, a quadratic throttling cost and linear

holding cost are used, i.e., c(A) = co( _- A)2 and h(i) = hoi, where co = 1 and h0 = 0.01.

Also, the discount rate is set at 3 = 0.

For a fixed number of customers i, the optimal admission rate Atj is seen to decrease

for coarser scale service duration, i.e., larger j. Thus, if the current job is expected to

require long service, fewer customers should be admitted to prevent high costs for the

future. On the other hand, for a fixed scale j, the optimal admission rate is monotonic

in the number of customers. Hence, higher degree of throttling is required for a busier

system. In Appendix D, we prove that this monotonicity actually holds more generally for

any convex holding cost h(i). Comparing Figs. 21(a) and 21(b), we also see that lower y

cases require higher throttling. Due to the longer expected service time, fewer customers

can be accommodated in these cases. Finally, as in the server control problem, practicable

flow control can be efficiently realized from the idealized policy by integrating minimum

probability-of-error (MAP) state estimates:

j(t) = log (rln)1n(l/)1 (41)

where t now represents the time elapsed since the last service completion.

6 Conclusion

In this paper, we have applied multiscale techniques in the study of fractal point processes in

various realistic networking scenarios. Our analysis of these processes under random erasure

and superposition is consistent with the broadly-observed self-similarity in aggregate traffic;

further analysis with this point process model may lead to further insights into mechansims
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by which self-similarity arises in networks. Our queueing analysis resulted in methods for

computing various performance measures such as quality of service and resource consump-

tion. This analysis identified several problems with the use of traditional queueing design

techniques for these scenarios-in particular, the substantial underutilization of resources

with memoryless service of fractal point process, and the inherently poor quality of ser-

vice for Poisson process serviced with power-law holding times. To mitigate these effects,

we have applied multiscale paradigms to develop systematic design methodologies for the

operation of these queueing systems. Several practical optimal controllers were obtained

from this approach. Through simulations, we have shown that by exploiting system history,

a simple multiscale controller significantly out-performs simplistic controllers which ignore

such past information. While we have focused on several specific problems mainly for illus-

trative purposes, our design algorithms are readily generalized to other queueing scenarios,

such as those involving different cost structures.

A Derivation of the Counting Process Distribution Coeffi-
cients: Arrival-Observed Case

In this section, we derive {7(a) (t);i = 0, 1,... }, the arrival-observed counting process distri-

bution. First, as given in (9), a closed-form expression exists for the Oth-order term 7ra) (t).
To obtain Taylor's series coefficients for higher-order terms, we expand the z-transform of
the probability distribution (8) as follows

P(z; t)lT = q (I+ (-B + zbTq) (At) + (B +zbTq)2 (At) 2 +.. 1 T

Extracting the coefficient of z l, we get that

r(a (t) = a( ) (x t ) - a )(At) +... (42)

where for k > 1,

a ) = qBk-lbTql T + qBk-2bTqB1T + . + qBbTqBk-21T + qbTqBk-1l T . (43)+
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But b = 1B. Thus,

a ) = qBklTql T + qBk-llTqBlT + . . + qB2lTqBk-21T + qBlTqBk-lT. (44)

This is simply the sum of all terms of the form

qBmlTqBn lT

such that m > 1, n > 0, and m + n = k. Moreover, we recognize qBlT as the th moment
of the random variable R, with distribution given in (12). Thus, we have

a( ) = E MlMk-1, (45)
1=1

with MI denoting the Ith moment of R.
Next we turn to the expansion of 7ra)(t) for arbitrary i. First, it is clear that the

coefficients of tk are zero for k < i. Thus, we have

(a)(t) = (i) (At) _ (i) (At)+ (46)
=)(t),a = ai 'i+l (i + (46)

Using the same argument as before, we have that each coefficient a() is the sum of all terms
of the form

qBm l 1TqBm2 1 T.. qBm i 1TqBm i + l1 T, (47)

with ml,m 2 ,. . ., mi 1, mi+l > 0, and ml +m2 + " +mi+l = k. Such terms with ml = I,
where 1 < 1 <I k-i+1, are those with m 2,m3,.. . ,mi 1, mi+l > 0, m2+m3+-- +mi-+l =
k - . But these are exactly the terms making up the sum akl ). Thus, we have

k-i+l
a(i) = Ma (i-1) (48)

k k-
1=1

B Derivation of the Counting Process Distribution Coeffi-
cients: Random Incidence Case

We first argue that the left null space of the matrix (-B + bTq) is spanned by the vector
qB- 1. Suppose the vector v is in the left null space, or

v (-B + bTq) =0

where 0 is a zero row vector. So,

vB = vbTq = q
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where K is the inner product vbT. Right-multiplying both sides by B- 1, then, we have

v = K (qB-').

We proceed to determine the coefficients in the counting process probability distribution
{7r)(t); i = 0,1,... } . Again, as given in (13), we have a closed-form expression for the 0th-

order term 7r(r) (t). For higher-order terms, we expand the z-transform of (8), with the initial
condition assuming the value P(z; 0) = &2 qB-1. Hence,

p(z; t)lT = 2 qB' I +(-B + zbTq) (At) + (-B + zbTq)) 2(t)2t) + IT. (49)

As before, it is clear that the coefficients for tk will be zero for k < i. Thus, we have

(r)l (50)
ir) (t) = .(i!)+ - ¥(i)( ! +' (50)

Focusing on the kth power of t in the coefficient of z i , we see that this is the sum of all
terms of the form

&2 qB-lBm 1TqBm2 1 T ... qB m i 1TqBmi+l IT, (51)

with ml, m2,. . , mi > 1, mi+l > 0, and ml + m2 + " q + mi+l = k. For those terms with
ml = 1, the product reduces to

&2 qBm2 1 T ... qBmi lTqBmi+ l
1

T , (52)

since q1T = 1. But the sum of all terms of this form is just &2a(i-1). On the other hand,
terms with ml > 1 can be written as

.2 qBmn' 1TqBm2 T ... qBm i lTqBmi+ 1 T, (53)

with il, m 2, ... , mi 1, mi+l > 0, and fhL1 + m 2 + * + mi+l = k - 1. But this is precisely
k2a(i) 1. Thus, we have shown the relation

r() = (a() + a(i-1))2. (54)

C Optimal Fractal Queue Server Monotonicity

In this appendix, we show that the optimal service rate i*,j for a fractal renewal process input
satisfies

/-l, j < j, for i = 1,2,..., (55)
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if the holding cost function h(i) is convex, i.e.,

h(i) -h(i -1) < h(i+ 1)- h(i), for i = 1, 2,....

We first show that (55) holds if the first difference of Vi,j, defined as

Ai, - Vij-Vi-l,j,

is nondecreasing in i. Rewriting the Bellman equations (34) for i > 0, we get that

P+I h(i) + j-l E e 2qj -lVi+lJ, + q - (56)
(56)

+ min [c() -,Ai,j }, i=1,2,..., j=0,1,.., L-1.

Now, suppose that Ai,j is indeed nondecreasing in i, and let il, i2 be some nonnegative integers,
with i 2 > il. Then, for every < yi, j,

C(4,7) - 4,,jAi2 , = C(14,,) -i i - i4,j(A 2 ,j-

< c(i) - Ai,,j - lj(Ai 2,j - Ail,j)

< C(A) - Ail,j - (ai,j - Ail,j) = c(G) - Ai2,j

where the first inequality follows from the definition of 1i*, j, and the second inequality follows from
monotonicity of Ai,j. So, L , < i2,j,

We proceed to show that Ai,j is indeed monotonic in i. For this, it suffices to show that at each
stage k of the value iteration method, the first difference

Ai,j (k) - V,j (k) - V_l,j (k) (57)

has this property. We set the boundary value Ao,j (k) to 0, for all j, k.
Now, it is trivial that Aij (0) is nondecreasing in i. Assuming this holds for Ai,j(k), we consider

the next iteration. Specifically, we rewrite the value iteration equation (36) as

V,j(k + 1) = P h(i) + 2qj- + (k+ - ) V(k) (58)
j'=1 (58)

+ min [c(L)-sAijj(k)] } i = 1,2 ....

Defining the optimal service rate at each stage k of the value iteration method as ~Ikj), i.e.,

ij =arg min [c(l) - Ai,j(k) (59)
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for every i,j, k, we have that

Ai+l,j(k + 1) = Vi+l,j(k + 1) - Vi,j(k + 1)

11
- ,B+Q 

+ Q- j ) V+,j (k) + c(,+4L,) ,j -_ k i+-, Aj(k)

L

- h(i) - q Vi+,j(k)

- j- Vj(k) - c(z+I),) + I.+~) j Ai.j(k)

_ Q {h(i +0 + l

L

1)- h(i) + E i2 (k)- T O qj 'Ai+ 2,j,(k)77- j'=l

- _ A+, (k) - (A(,,k) - A,(k)) 

Similarly, we get that

1 A - 2qjA,+I,j(
i,j (k + 1) < P h(i) - h(i - 1) + 2 E j- (k)

+ - X ) Aij(k) - k),j (ij(k) - Ai-,j()) 
Subtracting these two inequalities, we get that

Subtracting these two inequalities, we get that

(,3 + fQ)(Ai+ ,j(k + 1) - Ai,j(k + 1)) > (h(i + 1) - h(i)) - (h(i) - h(i- 1))

L

+A E t 2 qj'-1[Ai+2 j (k)-Ai+,,i (k)]

+ (Qj- +xj [i+i,j(k) -A,j(k)]

+ i ,j[i,(k)-Ai- ,_j(k)]

(62)

A0

By the induction hypothesis, convexity of h(i), and the fact that Q > A/ 7r
j-

7 -3 -+j, we get that
Ai+l,j (k + 1) > Ai,j (k + 1). Our assertion therefore follows by mathematical induction.

D Optimal Flow Control Policy Monotonicity

In this appendix, we show that the optimal admission rate Aj for a power-law queueing system
servicing a Poisson input satisfies

for i = 1,2,..., (63)
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L

h(i + 1) + E Z oqj'li 2 j (k)
=1

(60)

(61)

1

I

A* j > Axij ,

AW



given that the holding cost function h(i) is convex, i.e.,

h(i) - h(i - 1) < h(i + 1) - h(i), for i = 1, 2, ....

Using exactly the same argument as in Appendix C, we can show that j is nonincreasing in
i, if the first difference of V,j is nondecreasing in i. We proceed to show that the first difference
Ai,j, defined as in Appendix C, is monotonically nondecreasing. Our approach will exploit the value
iteration method, and prove by mathematical induction that the first difference of V,j(k) at each
stage of the iteration, is monotonic in i. Again, Ao(k) is set to be zero for all k. Also, it is clear that
Aij(0) is nondecreasing in i, since Vj (0) is identically zero. We assume the assertion holds for k,
and analyze

Ai, (k + 1) - Ai- ,j(k + 1).

For each k, we also define Voj(k) = Vo(k), and Ao,j(k) Ao(k).
To this end, we write the value iteration equations as

V(k + 1) = 1 fVo(k) + min c(A) +A z u2q'-1
3+Q X >E[o,-][ jA1=

Vj(k + 1) = / h(i) + E a (k + (Z [o.2k+=1

(V,j, (k)- Vo(k)) (64)

) V/,j(k)
(65)

+ min [c(A)+Ai+l,j(k)]}, i=1,2,..., j=0,1,...,L-1.
-,E[oX]

We define the optimal service rate at each stage k of the value iteration method as Ai ), i.e.,

arg minm c() + AAi+l,j (k .
E[o,Xl

Now, for i > 1, we get that

L

V +ij(k + 1) /= 3 + {h(i +)+ 7j-1 Z2qi-Vij,(k) + 
1=1

_+ c(A ,k)j + 

- ) Vi+,j (k)r/J-1

and

L

Vi,j(k + 1) = /+ h(i) + 1 - + - 1 ,(k)
'=) j1 (k

+ C(Ak]) + ,,,,j -+ (k) .
213 ZI}

31

(66)



Subtracting, we get that

Ai+l,j(k + 1) = Vi+l,j(k + 1) - Vi,j(k + 1)

L

+ rjl , a2qi' lAi,j,(k)
j'+=1

A+,( A+(, j(k) -

Similarly,

Ai,j(k + 1) = Vi,j(k + 1) - Vil,j(k + 1)

1 { rt_~_l L

< -- +h(i) - h(i - 1) + E '2qjl -Aij,
+ )L~,j ( 1i7l~j(b)-i~j())j=

+A:?,j (Aj+,j(k) -Aj(k)) .

Thus,

(P + Q)(Ai+1,j(k + 1) - Ai,j(k + 1)) > (h(i + 1) - h(i)) - (h(i) - h(i - 1))

L

+ - 1 o 2 qj - [, (k)- Ai-_ , j-(k)]
j'=1

+ - jl-A, k +,j)- +l,j(k) - (k)]

+ A 2
k.j [Ai+2,j (k) -Ai+lj(k)]-

Thus, it follows from the induction hypothesis, convexity of h(i), and the fact that Q > + i)l j,
that Ai,j (k + 1) is nondecreasing for i > 2. To complete the proof, we now show that A 2,j (k + 1) >
Al,j (k + 1). We note that

A2,j(k + 1) = V2,j(k + 1)- V,j(k + 1)

h(2)- h() + j 2 L
' o2qi'-1Alj,(k) + (

+ A(k) (A 3,j(k) - A2,j(k)) 

and

Al,j(k + 1) = V1,j(k + 1)- Vo,j(k + 1)
L

+ Eo a2qj'-lAo,j,

j'=l

+ A() (A 2,j(k) - A,j,(k)) }."o,j
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(k)+ - ) Aij(k)

(67)

- It )A 2 ,j(k)
r/-1

< + n{h(1)

> 1 hR i + 1) h(i)

1

'3 + Q

(k) + 0 - �' 1 A jj (k)
17j



Thus, again, our assertion follows for the case i = 1, for the same reasons.
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Figure 1: Successive magnification of the counting process associated with a fractal renewal
process; (a) the original process; (b) zoomed version of (a); (c) zoomed version of (b).
Interarrivals were synthesized according to the power-law density function (1), with shape
parameter 7y = 1.5
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0 arrivals 1 arrival 2 arrivals

Figure 2: The multiscale pure-birth process based on a finite-scale representation; dashed
boxes denote conceptual grouping into superstates. The rate of departure from each state is
a function the scale, Aj = A/r1; the probability of entering scale j' of succeeding superstate
is pj, = a2qj .

Table 1: Performance of various queueing server controllers servicing fractal renewal
process input
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Figure 3: First 4 terms in the arrival-observed counting process probability distribution
for a fractal renewal process, computed with a 20-scale dyadic representation; the shape
parameter of the interarrival distribution is y = 1.8. The time axis is normalized with
respect to the finest-scale arrival rate A.
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Figure 4: First 4 terms in the random incidence counting process probability distribution
for a fractal renewal process, computed with a 20-scale dyadic representation; the shape
parameter of the interarrival distribution is 'y = 1.8. The time axis is normalized with
respect to the finest-scale arrival rate A.
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Figure 5: Interarrival density function of a fractal renewal process under Bernoulli era-
sure, with erasure probability p. The shape parameter of the original process is y = 1.8.
These computations were performed with a 20-scale dyadic representation. The plots are
normalized with respect to the finest-scale arrival rate A.
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Figure 6: Arrival-observed counting process distribution of the superposition of two in-
dependent fractal renewal processes, generated with the counting process results of Figs. 3
and 4. The shape parameter of both constituents is y = 1.8. The time axis is normalized
with respect to the finest-scale arrival rate A.
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Figure 7: Random incidence counting process distribution of the superposition of two
independent fractal renewal processes, generated with the counting process results of Fig. 4.
The shape parameter of both constituents is y = 1.8. The time axis is normalized with
respect to the finest-scale arrival rate A.
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Dn Xn

0 in system 1 in system 2 in system

Figure 8: The multiscale birth-and-death process based on a finite-scale representation.
This is obtained by adding death transitions to the multiscale pure-birth process of Fig. 2.
To model a single-server memoryless queueing system, all death transitions occur at equal
rate p.
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Figure 9: First 21 terms in the steady-state customer distribution corresponding to a
memoryless single-server queueing system with fractal customer arrivals. The input process
is modeled with a 20-scale dyadic representation, with -y = 1.8, and lip = /A = 0.8.
The solid curves represent simulation results obtained with the next-event time advance
simulation [12], while the dashed curves represent computed results.
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Figure 10: Decay rate of the steady-state customer distribution in a single-server queueing
system with fractal renewal process input. The solid curves are obtained via bisection-
search solution to (26). The dashed curves are the closed-form upper bound prescribed by
(28). A 20-scale dyadic representation is used in this computation.
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0 in system 1 in system 2 in system

Figure 11: The transposed multiscale birth-and-death process for memoryless input ser-
viced by power-law server. This process is obtained by reversal of the roles of births and
deaths in the process of Fig. 8.
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Figure 12: Comparison of simulated and theoretical steady-state customer distribution for a
queueing system with power-law holding time servicing memoryless input. The solid curves
represent results of discrete-event simulation of the queueing system. The dashed curves
represent theoretically-predicted distributions for the corresponding queueing scenarios. For
the case y = 1.5, p = A/p = 2 x 10- 7, while for the case -y = 1.8, p = / = 1 x 10-5 .
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0 in system 1 in system 2 in system

Figure 13: The continuous-time Markov process employed in server controller design. This
process is obtained from the multiscale birth-and-death process of Fig. 8 by adding self-
transitions such that the total rate leaving each state is Q. Note that system dynamics are
preserved.

47

- - - --

QZ- XO C91,0 Q - X - Ct 2,0



0.5

0.45

0.4

0.35

E 0.3

a
'D 0.25

.' 0.2
c.

0.15

0.1

0.05

0 2 4 6 8 10 12 14 16 18 2(
Scale

(a)

0.45

0.4

0.35

I0.3

0

.E 0.2

0.15

0.1

0.05

0

y= 1.2

9 in system

I 1 in system

0 in system

v0 2 4 6 8 10Sl 12 14 16 18 20

(b)

Figure 14: State-based multiscale service policy for a queueing system with fractal customer
arrivals. The shape parameter of the input is y = 1.8 in (a) and -y = 1.2 in (b). The holding
cost h(i) = O.Oli, service rate cost c(,L) = ,2, and discount rate = 0 are used. Note that
with no customer present, optimal service rate is identically 0.
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Figure 15: Realizable optimal server for fractal renewal process input, based on the number
of customers in the system, and the time elapsed since the last arrival. The depicted policy
is for the case y = 1.8, c(,) = p 2, h(i) = 0.01i, and is obtained via a rewarping of the
horizontal axis in the graph in Fig. 14(a).
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Figure 16: Stationary server control policies for queueing systems servicing fractal renewal
process input, for the case y = 1.8, c(p) = 10[2, h(i) = 0.01i, P = 0.0. The solid curves rep-
resent the optimal multiscale server. The dashed curves denote an M/M/1 service controller
designed with the input treated as a Poisson process.
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Figure 17: iEstimated steady-state customer distribution for a queueing system arising

from the optimal multiscale controller and the M/M/1 controller, for the case ' = 1.8,

Fc(/) -- 102, h(i) O.1,l = 0.0. These estimates were formed using 500000 arrivals.
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Figure 18: Stationary server control policies for queueing systems servicing fractal renewal
process input, for the case y = 1.8, c(p) = 10/ 2, h(i) = 0.01i, P = 0.0. The solid curves rep-
resent the optimal multiscale server. The dotted curves denote the policy for the optimized
variation of the M/M/1 queueing controller obtained by scaling the service rates.
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Figure 19: Stationary server control policies for queueing systems servicing fractal renewal
process input, for the case y = 1.8, c(^) = 10p 2, h(i) = 0.01i, = 0.0. The solid curves
represent the optimal multiscale server. The dot-dashed curves denote the optimized policy
obtained by scaling the fine-scale service rates taken from the multiscale policy.
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Figure 20: The continuous-time Markov process used in flow control policy design. This
process is obtained from the transposed multiscale birth-and-death process of Fig. 11 by
adding self-transitions such that the total rate leaving each state is . Also, the zeroth
superstate is lumped into a single state.
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Figure 21: State-based multiscale flow control for a queueing system with power-law
service time and Poisson customer arrivals. The shape parameter of the service duration
distribution is y = 1.8 in (a) and y = 1.2 in (b). Holding cost h(i) = 0.01i, throttling cost
c(A) = (A - )2 , and discount rate p = 0 are used.
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